- 702.50 KB
- 2022-05-11 17:40:05 发布
- 1、本文档共5页,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
- 文档侵权举报电话:19940600175。
特大跨径悬索桥施工监控指南GuidelineForConstructionControlofLong-spansuspensionBridge(报批稿)浙江省舟山连岛工程建设指挥部西南交通大学
2010年9月
前言本指南主要针对特大跨径悬索桥施工监控而编制。主要内容分七部分:总则、术语与定义、施工监控基本原则、参数收集与获取、监控总体计算、监控测试与测量及施工异常情况的对策和质保体系。本指南编制中吸收了我国多年来大跨度悬索桥施工监控的经验,全面总结了浙江省舟山连岛工程西堠门大桥施工监控的研究成果,包括国家科技支撑项目“跨海特大跨径钢箱梁悬索桥关键技术研究及工程示范”中课题五“特大跨径钢箱梁悬索桥监控、管理关键技术研究”的成果,考虑了当前的设计、施工及控制的技术水平及未来的发展趋势。本指南在应用过程中,如发现需要修改和补充之处,请将意见及相关资料寄西南交通大学土木工程学院(地址:四川成都二环路北一段111号,邮编:610031,电子邮件:rlshen@126.com)。本指南由浙江省交通运输厅提出并归口管理。本指南由浙江省舟山连岛工程建设指挥部、西南交通大学联合编制,主要起草人是:沈锐利、唐茂林、陈卫国、郭健、卫星、严琨、齐东春。
I
目录1121.131.241.352633.13.23.33.47484.194.2103.314.4124.5135总则..............................................................................................................1施工监控的主要任务与目的...................................................................1适用范围...................................................................................................2涉及内容及与其它规范、规则关系.......................................................3术语和定义..................................................................................................3施工监控基本原则......................................................................................4监控的目标.............................................................................................4监控与设计、监理、制作、施工的关系.............................................4施工监控的范围、手段.........................................................................5监控的工作流程.....................................................................................5参数收集与获取..........................................................................................7监控所需参数及分类...............................................................................7监控参数的获取方法及要求...................................................................9监控参数精度的检验...............................................................................9监控要求的主缆施工条件.....................................................................10加劲梁重量的确定.................................................................................10监控总体计算..........................................................................................11
II
145.1155.25.31666.16.26.36.46.56.6总体计算的目的.....................................................................................11总体计算的内容.....................................................................................11悬索桥主缆理论线形及计算方法..........................................................17结构监控测试与监控测量........................................................................21桥塔的应力与温度场监测...................................................................21吊索力监测...........................................................................................21主缆锚跨索股张力监测.......................................................................22主梁应力的监测...................................................................................23温度的监测...........................................................................................23监控测量...............................................................................................25177施工异常情况的对策及质保体系..............................................................36187.17.2施工异常情况对策...............................................................................36监控实施组织.........................................................................................377.3监控质量及安全保证措施.......................................................................38
III
11总则21.1施工监控的主要任务与目的1.1.1施工监控主要任务根据实际的施工工序,按照已完成工程的结构状态和施工过程,收集现场的参数和数据,对桥跨结构进行实时理论分析和结构验算,分析施工误差状态,采用变形预警体系对施工状态进行安全度评价和风险预警,根据分析验算结果调整控制参数,预测后续施工过程的结构形状,提出后续施工过程应采取的措施和调整后的设计参数。[说明]悬索桥是一种结构合理的桥梁型式,它能使材料充分发挥各自的特长,这一特点使悬索桥成为大跨度桥梁中最具竞争能力的桥型之一。对桥梁结构的施工过程进行合理的施工控制是使桥梁施工过程和成桥状态与设计要求尽可能接近的重要保证,是增加结构施工安全性的一个重要手段。与其它桥型相比,悬索桥相对较柔,施工过程中工况变化繁多,形状变化很大,结构具有强烈的几何非线性,悬索桥成桥后对误差调整的手段有限,从施工一开始就进行完整和全面的施工监控是很有必要的。一般说来,对于悬索桥,设计给出的是成桥理想状态,要想将这种状态在现场有计划、安全、经济地实现,就必须对实际施工过程进行精确的分析、严格的监测与测量,即进行全面的施工监控。1.1.2施工监控的目的通过施工监控,保证施工过程中结构的安全,确保完成的结构不论是内力或线形都满足设计的要求。[说明]对于悬索桥结构,其内力和线形随温度、桥塔偏位、恒载误差、施工误差相当敏感。施工阶段结构线形和内力随桥梁结构体系和荷载工况不断变化,每一阶段的误差如果不能消除,累计后将影响成桥结构的受力及线形。由于各种因素的直接和间接的影响,使得实际桥梁在施工过程中的每一状态几乎不可能与设计状态完全一致。与其它桥型相比,悬索桥在施工过程中的线形管理较难,更容易产生施工误差,其原因如下:1)悬索桥是由刚度相差很大的结构单元(塔、主缆、梁、吊索)组成的超静定结构,
与其它形式的桥梁相比,在荷载下具有强烈的几何非线性。1
2)设计参数的取值不可能与实际结构所反映的一致。例如结构的自重、截面尺寸、混凝土弹性模量、施工荷载等均是具有随机性的几何及物理参数,与设计值相比将或多或少地有所变化;3)悬索桥结构的几何形状对温度比较敏感,外界的温度变化将引起悬索桥几何形状和吊索拉力的改变。4)跨度变化对悬索桥结构的几何形状非常敏感,架设过程中的桥塔偏位将引起悬索桥几何形状的较大改变。5)环境因素诸如湿度、摩擦、风载的影响;6)结构计算模型简化和计算误差的影响;7)测量、测试误差的影响。上述大多数因素的影响在设计阶段一般没有也无法完全考虑和计及,只有在施工过程中根据结构的实际参数和通过监测得到的反应予以考虑。若不在施工过程中实施有效控制,就有可能由于误差的积累致使成桥后结构的整体受力状态及线形严重偏离设计目标而影响结构的可靠性。国内外悬索桥施工过程中由于施工控制方案及调整控制措施不当,会出现常见的以下几类问题:1)主缆锚跨索力不均匀;2)吊索索力不均匀;3)主缆线形、加劲梁标高误差较大;4)加劲梁线形不平顺,使行车舒适度下降,并会引起桥梁的使用寿命缩减;5)索鞍不能复位或者桥塔纵向偏位大;以上的问题需要通过施工控制最大限度地消除。31.2适用范围本指南适用于跨度在1000m以上、钢箱梁与钢桁架加劲梁的地锚式公路悬索桥上部结构的施工监控。部分内容可供混凝土加劲梁悬索桥和自锚式悬索桥上部结构施工监控参考。[说明]大跨度悬索桥的施工监控一般分两个阶段进行。第一阶段是基础和下部结
构施工阶段,包括塔、锚基础和锚碇的施工。第二阶段为上部结构施工阶段,包括桥2
塔、主缆和加劲梁等结构的施工。下部结构施工阶段的监控主要是地基变形与承载力、下部临时结构强度、刚度与稳定性,以及大体积混凝土的温度控制、沉降监测等。本指南主要针对上部结构的施工监控编制。为满足上部结构施工监控需要,下部结构监控应收集和整理出桥塔基础沉降-时间(荷载)曲线,提出锚碇基础的沉降、滑移和偏转等的时间(荷载)曲线,给出桥塔和锚碇的最终状态预测值供上部结构施工监控使用。41.3涉及内容及与其它规范、规则关系本指南仅涉及与大跨度悬索桥施工过程有关的结构线形和内力的计算分析、工程测量与测试;对结构施工的相应要求、结构承载能力以及结构强度、刚度和稳定的要求等仍应遵守国家或交通部有关标准规范的规定。52术语和定义本指南的主要术语及定义与《公路桥涵设计通用规范》(JTGD60-2004)、《公路悬索桥设计规范(报批稿)》等,个别不同的在相应条文下的说明中进行了解释,因此不再重复列出。
3
63施工监控基本原则3.1监控的目标对于大跨度悬索桥,施工监控的具体目标是:1)成桥后加劲梁桥面线形平顺,达到公路路面平顺度设计要求;2)成桥后主缆索股锚跨张力均匀,单根索股索力最大偏差不超过平均值的10%,误差的均方根不超过均值的5%;3)吊索力逼近设计状态,单吊点吊索力最大误差不超过设计值的10%;4)基准索股的架设精度宜控制在以下范围以内:中跨±40mm,边跨±30mm以内;空缆线形的标高误差宜控制在±40mm;5)成桥后主缆跨中标高逼近设计状态,矢高误差应小于±L/10000(L为中跨的主缆跨度);6)成桥时桥塔位置逼近设计状态,塔高h在200m以下时,顺桥向塔顶偏离设计位置的误差不超过h/3000,且不超过30mm(h为从承台顶到塔顶的高度,单位为m);7)在架设阶段确保主缆和加劲梁线形、桥塔偏位等与理论计算相近,保证施工过程中各结构构件的安全;施工过程中和竣工后结构内力状况满足设计要求,结构的整体变形、位移不超过设计文件规定的值;结构线形符合设计要求。8)精度控制和误差调整的措施不对施工工期产生实质性的不利影响。[说明]影响悬索桥成桥线形的主要因素是随机的,根据这些参数的随机分布规律,可计算出实现基准索股线形、空缆线形和成桥线形各种控制精度的可靠度,实现太高精度的可靠度非常低。本指南将可靠度设定在不小于2,以此确定控制精度要求。3.2监控与设计、监理、制作、施工的关系监控应在建设单位领导下,与设计、制作和施工单位密切配合,向监理提交监控联系单或监控指令,并通过监理向制作、施工单位发布,同时重要监控指令或根据监
控要求需要进行的施工方案的重大改变应取得设计单位的认可。4
[说明]大跨度悬索桥的施工监控计算必须考虑施工中已经产生的误差的影响、必须精确包括临时荷载的各种作用的大小、必须分析后续施工中可能发生的各项误差对完成结构内力与线形的影响、必须根据施工当时的温度等条件确定施工时的控制参数(标高、安装内力等);设计计算是按理想的状态、设定的基准温度等条件,对结构进行的理论状态的计算,目的是保证建造和使用过程中结构的强度、刚度和稳定性满足规范要求。监控计算的控制目标就是设计条件下的理论值。监控计算是为保证结构完成质量服务的,与施工一样应受监理单位的监督管理。施工监控是为结构施工服务的,应在合理的施工方案下进行施工监控;同时在施工方案制定的过程中,施工监控应从保证质量、增强施工安全性方面提出意见与建议。监控测试与监控测量实际是为保证结构质量和提供量化的控制参数所需要进行的工作,是获得监控计算参数的直接手段,也是监理工作获得量化质量控制参数的一种重要途径,是在施工测试与测量基础上的检验复核工作。3.3施工监控的范围、手段上部结构的施工监控范围为桥塔、猫道、主缆、加劲梁和桥面铺装等施工阶段的施工应力与变形监控。大跨度悬索桥上部结构的施工监控以监控计算为主,辅助以监控测试与测量。3.4监控的工作流程大跨度悬索桥施工监控的流程如图3.1所示。
5
施工信息施工进度→施工进度报表及实际进度表施工临时荷载状况→施工临时荷载表施工现场试验→实测混凝土弹性模量、容重等数据表施工单位施工测量→塔、缆、梁、猫道等施工测量数据表监控关心的其它施工信息执行施工指令反馈施工结果现场监理发布控制指令工厂监理控制加工质量预制加工信息建设单位监理单位执行加工指令反馈加工结果加工单位主缆丝股预制→钢丝实测直径、弹模数据表钢梁制造→梁段实际加工重量表索夹制造→索夹实际加工重量表吊索锚头→吊索锚头加工重量表提供施工结果索取控制指令提交指令数据提交测试、测量结果提交误差分析结果桥面铺装层→铺装层容重试验表监控关心的其它加工信息提供最新设计图复核监控设计单位复核设计协商控制要求监控单位图3.1监控信息控制指令(架设标高、索力调整等)→施工控制数据表应力、支反力测试→梁、塔、墩应力及支反力测试数据表位移测量→梁端位移、桥塔偏位测试数据表几何测量→塔、缆、梁、猫道等控制点监控测量数据表误差分析→梁、塔、缆、吊索力等施工误差分析报告其他控制信息大跨度悬索桥施工监控流程
6
74参数收集与获取84.1监控所需参数及分类大跨度悬索桥施工监控所需参数至少包括表3.1所列;各参数对结构施工控制的敏感性可参照表3.1确定。[说明]大跨度悬索桥施工监控所需参数可以分为几何参数、材料特性参数和环境参数。几何参数是指结构或构件的几何尺寸;材料特性参数主要指与材料力学特性有关的参数,如弹性模量、容重、线膨胀系数等;环境参数是指与施工过程有关的温度、临时荷载、临时支撑与约束等。在这些参数中,有些对于施工监控是敏感的,有些是影响很小的,表3.1列出了悬索桥上部结构施工监控需要的参数,根据其对结构施工敏感性的影响,将其分为3级。敏感性为1级的参数是指该参数有影响,但不突出,其参数变化对所涉及的影响范围(或对象)不敏感,即使该参数采用理论值,对控制目标的实现也是可接受的;敏感性为3级的参数是指该参数对所涉及的影响对象很敏感,施工监控中必须获得实际的参数,监控工作必须以实际参数为准,否则监控目标就很难实现;敏感性2级介于1和3之间,其参数至少应采用理论加经验修正值。表3.1大跨度悬索桥施工监控所需参数及其敏感性分类表
7结构构件参数名称影响范围(或影响对象)敏感级别备注锚碇锚固面坐标锚固点位置1主缆锚固长度调整量散索鞍中心坐标主缆架设时跨度3施工线形控制锚碇沉降成桥线形、桥塔内力3塔顶偏移和塔底弯矩锚碇纵向滑移成桥线形、桥塔内力3塔顶偏移和塔底弯矩锚碇基础转动成桥线形、桥塔内力3塔顶偏移和塔底弯矩桥塔构造尺寸变形量、应力大小1桥塔顶抗推刚度、压缩量弹性模量变形量2桥塔顶抗推刚度、压缩量温度标高、纵横向位移、应力3塔顶坐标
8收缩、徐变、基础沉降变形量3塔顶预高猫道结构重量塔顶处水平力平衡3塔顶纵向偏移矢高猫道线形、塔顶平衡状态3承重索弹性模量承重索制作长度、变形量3长度调节装置的设计鞍座构造尺寸施工变形和施工方案1施工阶段塔边缘与缆相对关系施工标高线形和成桥目标2施工线形和成桥线形预偏设置架缆线形、顶推控制3结构重量散鞍自立和锚跨张力控制1散索鞍主缆钢丝直径缆重量和面积3成桥缆与梁的标高钢丝弹性模量无应力长度1成桥缆与梁的标高防腐部分自重线形和内力2线膨胀系数架设线形控制1施工线形控制索股弹性模量成桥线形3主缆跨度架设线形调整2主缆垂度无应力长度2索股与缆温度无应力长度、线形判断2索夹与吊索索夹加工尺寸安装位置1索夹重量成桥线形控制1吊索面积弹性变形量2吊索弹性模量弹性变形量2吊索制作长度加劲梁线形、吊索力大小3加劲梁截面尺寸重量与长度1梁段重量线形和桥塔顶纵向位置3施工方案连接方式2温度合龙与线形1
94.2监控参数的获取方法及要求特大跨度悬索桥施工监控参数应通过以下方法获取。4.2.1实际现场测量对于涉及到结构的实际坐标、沉降和变形、几何尺寸等方面的参数,应采用现场实际测量的方法获取。对于采用大地测量方式获取的数据,应采用国家一级控制网作为基准,按工程具体情况,设置二等水准控制网。对于结构塔、锚联测,应采用二等水准测量控制网进行测量,达到二等水准测量控制精度。4.2.2试验室与工厂测量对于材料的弹性模量等参数,应采用试验室测量的方式获取;钢丝直径、索股弹性模量、吊索弹性模量等参数,应在加工时进行测量、试验,并进行统计,提出统计确定的参数;对于吊索长度、加劲梁段重量等,则应在加工厂按规范或设计、监理要求,进行测量或称重。4.2.3通过现场测试识别有些参数既无法通过现场测量直接获得,也无法在试验室或工厂直接获取,需要采用间接的方法,通过测试、试验和计算分析,利用参数识别的方法获取。如桥塔顶实际的纵向抗推刚度、主缆温度场等。103.3监控参数精度的检验对于通过现场测量获得的参数,应通过复测、误差检验等方式确认数据准确可靠,误差在允许范围之内;对于通过实验室测试和工厂测量获得的参数,应通过数据检验,排除异常数据,选择可信度较高的数据作为采用数据;对于通过现场测试,采用参数识别的方法获得的参数,则要进行原因分析、反演试算,检验识别数据的可靠性。
9护栏及桥面铺装铺装厚度结构线形与内力3重量结构线形与内力3施工方案变形与内力、局部应力1
14.4监控要求的主缆施工条件4.4.1不进行温差修正的条件悬索桥主缆施工中可不进行温差修正的基本条件是:被调索股所在跨的长度方向温差小于2℃,被调索股与参考索股之间的平均温度差小于0.5℃,被调索股所在的层与其下层索股之间的平均温度差小于0.5℃;4.4.2不满足温度条件的修正当3.4.1的条件不能满足时,应进行纵向温度场和不同层间索股温度的测量,并在监控计算中,考虑纵向温度场的影响,给出不同纵向测点的控制值,调索时须在同一跨内,至少进行不少于三个点考虑温度修正后的线形吻合比较;4.4.3主缆施工对风环境的要求被调索股所在跨桥塔顶及跨中风速应小于12m/s。4.4.4主缆横截面温度场的确定对于主缆的横向温度场,有条件时应在现场环境中制作一主缆节段,与主缆施工同步进行索股架设,密封节段的两端,测量中间截面的温度场,以此作为实际主缆截面温度场的参考,同时在实际主缆截面中还需要布置适当的测点与测温索对照;也可以采用在实际主缆上布置表面测点,进行连续的测量,然后采用参考的热物性参数,将表面的测量作为边界输入,采用有限元的方法,分析主缆内部的温度场。124.5加劲梁重量的确定由于加劲梁重量的变化对实现线形控制精度的可靠性影响比较大,应对加劲梁的重量(包括桥面铺装重量)进行称重。
10
135监控总体计算145.1总体计算的目的监控计算的目的是:校核设计参数,提供施工各阶段理想状态线形及内力数据,对比分析施工各阶段的实测值与理论值,对结构参数进行识别与调整,对成桥状态进行预测、反馈,提供必要的控制数据。[说明]悬索桥各构件一旦被架设,其误差调整的可能性就比较小,为了使最终成桥状态与设计目标状态接近,就只能调整在该构件后面施工的构件的参数。为保证设计的线形和结构内力能够实现,在开展具体监控工作以前,必须以理论参数为基础,依据施工可能的方案,对所监控的结构进行全面的精确的理论计算,以全面确定结构各部分的理论数据,作为后期监控的控制目标。在施工过程中,根据理论资料和收集的已经安装构件的施工误差和后续待施工构件的设计参数的基础上进行监控计算是悬索桥监控最重要的手段。155.2总体计算的内容监控总体计算包括以下几方面的内容:5.2.1设计复核、确定监控目标状态监控复核至少包含以下内容:1)理论成桥状态复核(1)各构件的理论重量、几何特性计算;(2)理论吊索张力计算;(3)主缆成桥线形计算;(4)成桥状态各索鞍在桥塔上的相对位置计算;2)理论空缆状态复核(1)(2)(3)理论空缆线形计算;理论预偏量计算;理论锚跨张力计算;3)理论无应力尺寸复核(1)
吊索理论无应力长度计算;11
(2)(3)(4)主缆理论无应力长度计算;钢梁无应力制造长度计算;桥塔预高量计算;4)主缆锚固调节量检算考虑恒载重量误差、主缆的弹性模量误差、面积误差、制作长度误差等因素,对主缆进行影响参数分析和误差分析,验算主缆锚固可调节长度是否足够。[说明]设计单位的计算着重于桥梁的成桥状态分析,从结构施工到最终的成桥状态的跟踪计算与误差调整主要由监控单位来完成。监控单位在接手设计图纸之后,应该对设计图纸进行必要的复核,目的是深入理解设计图纸,领会设计的意图,收集设计参数,同时检验设计的结构能否满足拟定施工方案的要求;在与设计的计算参数一致的情况下进行计算分析,与设计的结果进行比较,看两者是否一致,因为监控的目标是设计的成桥状态,如果监控的目标成桥状态与设计不一致,那么监控是偏离方向的。5.2.2上部结构理想施工全过程的仿真分析以设计复核中建立的原始数据为基础,根据设计拟定的施工过程或施工单位确定的施工方案,建立上部结构施工过程计算机仿真分析系统,对加劲梁段的吊装过程进行计算,根据结构在理论施工状态(无施工误差)下各阶段的施工参数,计算各施工阶段的内力、变形、监控目标参数理论值,提出相应的施工建议,确定明确的安全措施,预测结构在各个阶段的形状。仿真分析计算应至少提供以下结果:1)各个施工阶段的主缆线形(主跨各八分点的标高;边跨各四分点的标高);2)各个梁段安装阶段的加劲梁线形、内力、应力;3)各个施工阶段的桥塔偏位、内力、应力;4)鞍座顶推阶段安排,各顶推阶段的顶推量、最大顶推力;5)各个阶段的主缆锚跨张力;6)恒载状态下加劲梁的内力、应力;7)恒载状态下的吊索力;8)恒载作用下桥塔的收缩、徐变与弹性压缩量;5.2.3确定加劲梁理论制造线形
12
以理论计算为基础,根据加劲梁的恒载设计内力状态,确定加劲梁的现场拼装线形。根据现场拼装线形,考虑焊接要求和焊接变形影响,确定加劲梁的工厂制造线形。5.2.4桥塔的监控计算1)确定桥塔的控制指标对桥塔建立详细的实体分析模型,计算桥塔的抗推刚度、塔顶预留下沉量和允许纵向位移、允许扭转变形,确定后期施工时桥塔的安全指标。监控计算中宜以桥塔截面应力不超过以下值来控制桥塔顶在不平衡力作用下的桥轴方向的变形:一般情况下桥塔柱截面应不出现拉应力;考虑施工阶段风与塔顶不平衡力共同作用下,桥塔柱截面的拉应力应不大于0.5MPa;不超过一段梁的吊装工况且与风荷载组合的极端短暂情况下,桥塔柱截面的拉应力应不超过所用混凝土的抗拉强度设计值的0.7倍。2)断面非均匀温度场作用下桥塔的偏位分析桥塔在日照和风作用下,横断面上各点可能会产生温差。在断面非均匀温度场作用下,桥塔会发生偏位和扭转。监控中有必要对桥塔建立详细的实体分析模型,在实测温度场的作用下,计算桥塔的三维几何状态变化情况,为桥塔的实际施工位置、荷载影响的实际偏位提供识别参数。3)制定鞍座顶推方案主鞍座的顶推方案制定原则是:主鞍座顶推前后,鞍座两侧的索力水平分力差应不使桥塔柱截面拉应力超过控制值;主鞍座顶推前后,鞍座两侧1.65倍的索力差应不大于主缆在鞍座中的静摩擦力,以保证主缆不在鞍座中滑动。根据桥塔应力与变形指标,在保证桥塔安全和主缆不在鞍座中滑移的前提下,确定鞍座的顶推阶段、各顶推阶段的顶推量、最大顶推力等。5.2.5主缆的监控计算1)主缆制作长度的计算对于采用PPWS法施工的悬索桥,需要根据实际采用钢丝材料的面积与弹性模量,计算索股的制作加工长度;应给出索股两锚头前端面间、图4.1所示标志点间索股基准温度下的无应力长度。[说明]
无应力长度是PPWS法制作索股时的基准参数,必须保证准确可靠。为保13
证主缆无应力长度计算的准确,应采用不同的方法对中心索股的长度进行检验。如无其他可靠的方法,至少应进行以下方式的检验:采用绘图软件,根据设计的成桥状态主缆线形,绘出包括鞍座曲线在内的主缆线形,然后测量主缆锚固点间的长度,这样得到主缆的近似形状长度S。根据主缆的安全系数要求,一般主缆的弹性应变应在3‰左右,因此可用此数据检验弹性伸长量。因此主缆的无应力长度S0应在0.997S左右,如果与检验长度差异大,应重新计算。图5.1通长索股与边跨背索上的标记点2)索鞍预偏量和主缆中心线形计算索鞍预偏量的计算原则是:保证索股安装时各跨相对鞍座不动点的主缆无应力长度等于成桥设计值;索鞍两侧的索力差在给定的投影方向等于零或等于给定值。[说明]索鞍的预偏与索的安装线形对应,一般施工监控是根据所获得的桥塔、锚固点的位置和标高施工误差数据(在猫道架设前这些数据应该详细测设,并作标记点)、主缆索股面积与弹模误差数据及桥塔预高量(恒载弹性压缩、收缩徐变量),先计算出各索鞍的预偏量;然后在实设预偏量的基础上,再计算各种温度、各种跨度变化情况下的各跨主缆中心位置的架设线形(跨中点纵向位置和标高)。3)主缆索股架设的合理层距的确定特大跨度悬索桥主缆索股的架设应采用层间距量化的方式架设。索股层与层之间的距离可采用以下方法计算:假定索股实际的形状为近视的圆形截面,按22%~25%的空隙率,计算出索股的直径,施工架设时索股层与层之间的距离按索股直径加1~2mm控制,这样层与层之间的距离在基准温度下是固定的,索股调整时根据层与层之间温度差,计算其影响,修正层与层间距离。4)基准索股架设线形监控计算
14
根据主缆中心索股的线形和主缆架设时的层距,考虑主缆各点倾斜角的影响,计算出基准索股的监控控制标高,确定主缆基准索股的架设线形。温度、跨度变化对基准索股的线形将产生影响,监控计算应给出各种温度下和跨度变化下的线形控制表或经检验的公式或计算程序供施工单位使用。5)相对基准索股的架设监控计算从第二层开始,将所架设层最靠外索股作为相对基准索股。根据主缆架设时的索股层距和拟架设层相对索股与紧邻层已架设基准(或相对基准)索股的温度差,计算拟架设层相对基准索股相对于紧邻层已架设基准(或相对基准)索股的高差,以紧邻层已架设基准(或相对基准)索股的线形为基准,调整拟架设层相对基准索股的线形。6)一般索股的架设计算各层索股应以该层的相对基准索股为标尺,考虑拟架设索股与相对基准索股温度差引起的高差调整量,计算出相对于相对基准索股的标高差供施工调整使用。7)主缆锚固张力计算计算架索阶段主缆各根索股在各温度变化下的锚固点张力,提供索股现场架设软件或者Excel计算表格。8)主缆索股架设期间的抗滑检算在索股架设期间,在温度变化、桥塔偏位等作用下,鞍座两侧的主缆索股会产生索力差,应验算此索力差是否会造成主缆索股在鞍槽内滑移。极端情况下应保证抗滑安全系数不小于1.25。9)计算最不利条件下所需索鞍最大水平支承反力在索股架设期间,散索鞍、主索鞍都需要在精确预偏之后临时固定,限制其纵向滑动。在施工控制与仿真分析系统中可以计算出最大温度变化作用下和最大风载作用下散索鞍、主索鞍的临时支承反力,以便施工单位设计临时支承构件。10)散索鞍支承拆除的合理阶段的确定通过计算分析与验算,确定出散索鞍支承拆除的合理阶段。[说明]计算和实测表明,在索股架设期间,若对散索鞍进行固结,则随着索股架设的增加,在温度变化作用下,散索鞍的固结反力会变得非常大,有可能会使散索鞍临时支承发生强度破坏;还可能会使主缆索股克服与鞍槽的摩擦而滑移,造成锚跨张力不均匀。因此,在满足散索鞍自立及后期锚跨索股张拉要求条件下,应拆除散索
15
鞍临时支承。5.2.6主缆紧缆后的参数识别与架设精度分析在主缆索股架设完成并紧缆后,监控单位利用各索股表面温度和主缆断面温度场测试数据进行参数识别,确定主缆实际平均温度;利用实际平均温度、实测跨度和线形数据进行反馈计算,确定主缆架设的实际无应力长度;分析主缆的架设精度。考虑主缆架设误差、加劲梁重量误差和二期恒载误差,以最终的加劲梁线形为目标,调整加劲梁的架设预拱度。5.2.7索夹安装位置计算计算索夹在各温度及桥塔偏位下的安装位置。5.2.8吊索下料长度计算在确定实际空缆线形后,需要重新计算吊索长度。[说明]悬索桥的加劲梁线形主要由空缆线形、吊索长度及加劲梁上的恒载决定;一旦索股架设完成,空缆线形就已确定;吊索架设完成后,加劲梁的线形就已经确定;可见,悬索桥线形控制的关键在于控制主缆的架设线形、在完成的空缆线形上决定吊索长度。在吊索长度决定后,就不可能调整成桥线形,就是能够调整,也是微幅的。以理论加劲梁线形为目标状态,利用主缆实际的架设线形和较准确的加劲梁一期恒载和二期恒载,考虑主缆的架设误差,在施工监控与仿真分析系统中可以计算出吊索的下料长度,监控单位计算出的调整后的吊索长度,经设计人员计算确认后,交由厂家并通过严格的监理达到吊索的制造精度,方可施工安装。5.2.9猫道改挂的计算对猫道的改挂工作进行模拟监控计算,以得出猫道改挂过程中桥塔偏位、主缆线形,并分析因猫道改挂需要放松的长度调节量,并与实测结果比较。5.2.10加劲梁架设阶段监控计算(1)索鞍顶推方案的修正在前述理论分析中已经确定了初步的索鞍顶推方案,在加劲梁吊装前应该考虑各
项误差和施工设备、临时机具等重量后重新计算,以确定是否需要调整顶推阶段及顶16
推量。(2)加劲梁吊装过程的计算以成桥桥面线形为目标状态,在考虑各项施工误差的基础上,按照加劲梁的吊装过程、考虑各种临时荷载,重新计算各阶段的主缆线形、加劲梁线形、桥塔偏位、主缆索股张力变化等,对4.2.3的加劲梁制造线形作适当的调整以确定实际加劲梁的吊装线形,同时验算在施工阶段的风荷载、温度变化下结构的安全性,在以后各工况与实测值比较,识别主缆的真实的弹性模量并反馈到仿真计算系统中,不断修正预测最终的成桥状态。(3)加劲梁合龙过程的计算根据合龙方案,对加劲梁的合龙过程进行仿真分析,计算合龙前、后的线形的变化情况,计算进行合龙施工需要的合理空间,提出施工控制建议;验算合龙过程中临时结构与永久结构的安全性。(4)无索区加劲梁体系转换的计算根据施工方法(临时支架或临时吊索)拟定无索区加劲梁体系转换方案,对体系转换过程进行仿真分析,验算体系转换过程中临时结构与永久结构的安全性;提出施工步骤、线形控制指令。(5)二期恒载与成桥线形的计算根据桥面铺装机械和设备情况和拟定的施工流程,按实际铺装容重和铺装过程,计算铺装阶段桥塔、加劲梁的结构内力与变形,提出施工控制建议。5.3悬索桥主缆理论线形及计算方法当不考虑钢丝及由钢丝组成的索股和主缆的抗弯刚度时,悬索桥主缆可简化为理论索进行分析。对于理论索,根据对主缆自重的分布模式的假定的不同,可分为抛物线理论和悬链线理论,悬链线理论比抛物线理论具有更高的计算精度。特大跨径悬索桥的监控计算应采用分段悬链线理论;对于跨度1500m以上或主缆直径90cm以上的悬索桥,宜考虑主缆抗弯刚度对结构内力与线形的影响。[说明]成桥状态主缆线形的计算是设计和监控计算的基础,在同样基准条件下,监控计算结果应与设计基本一致。在进行成桥状态线形计算前,首先应设计出成桥时主跨的吊索力分布状态,该分
布应满足加劲梁的受力要求,并通过施工过程的模拟检验确定合理可行。将设计的由17
加劲梁传给吊索的恒载张力、吊索自重及索夹与锚头等自重作为作用于吊索中心的集中力,将主缆自重、缠丝等防护自重作为沿主缆弧长的分布荷载,将主跨主缆作为分段悬链线,建立悬索桥主缆的分段悬链线计算模型,按主跨指定点的标高为设计值进行成桥线形迭代计算。在线形和主缆长度计算中,应有可靠的方法考虑主缆鞍座曲线对主缆线形计算的影响。边跨或非主跨线形的计算时,应以主跨计算确定的主缆水平力(或张力)为控制值,依据相应的力控制条件,按分段悬链线法计算非主跨的线形。1)分段悬链线计算理论与方法理论索的自重实际是沿索长均匀分布的,此时对索结构,建立的线形与荷载的平衡方程为:Hd2y2−q1+=0dx2(5.1)当两端点的高差为C时,方程的解可表示为悬链线:y=Hq2âx(5.2)式中â(c/l)sinhââ=ql2H公式(5.1)所代表的曲线是一族悬链线,与抛物线的情形相同,如果给定曲线上任一点的座标值,整条曲线即可完全确定。当二支座等高时,c=0á=â=qlzHy=Hqqx(5.3)对于悬索桥的主缆,其自重、缆上的缠丝及防护重量等可看成是沿索长均匀分布的,索夹重量、通过索夹传递的吊索重量和加劲梁恒载等可看成是作用于索夹点的集
中力,这样主缆的精确的计算模型可简化为分段悬链线模型:在两索夹之间,主缆的线形为悬链线,索夹点为各分段悬链线的分点,在分点处曲线连续、力保持平衡。对于分段悬链线计算模型,在已知荷载、跨度、两端点高差和缆上任意点相对于端点的位置后,可采用迭代的方法进行计算。18dxdycoshá−coshl−á+âcoshá−coshH−á
一般设计图时根据线路要求确定了成桥状态主缆的理论顶点、锚固点和主跨的矢跨比(或者跨中点位置与标高),根据施工过程的分析可确定吊索传递的加劲梁恒载,有了这些数据后参照图4.2建立线形迭代计算过程:图5.2主跨主缆线形计算步骤计算出主跨的线形和确定出主跨的恒载水平分力后,对于边跨,一般是要求主缆的水平分力与主跨相等,这样就已知了索力的水平分力,边跨的线形就能根据满足通过支承点的条件确定,采用迭代计算确定。获得各跨的主缆线形后,按悬链线理论,计算主缆各索段的无应力长度、伸长量、内力和切线角,从而得到主缆的无应力设计长度,这是后续施工计算的基准。2)考虑抗弯刚度影响的分段索
特大跨度悬索桥由于其主缆直径比较大,应分阶段进行内力和线形分析。在基准19
索股架设阶段,可采用不考虑抗弯刚度影响的悬链线根据解析方法计算基准索线形,并形成最终的主缆;在加劲梁吊装阶段,则宜将主缆简化为考虑抗弯刚度影响的索,按考虑抗弯刚度的分段索的方法建立有限元计算模型,同时考虑主鞍座、散索鞍及锚跨索股曲线的影响,采用精细化方法进行分析。
20
166结构监控测试与监控测量6.1桥塔的应力与温度场监测6.1.1设备选型桥塔应力监测主要用于了解在施工过程中,特别是上部结构施工过程中桥塔各控制部位的应力状态,温度监测则是用于掌握桥塔结构整体温度和横截面的温度场。对于钢筋混凝土桥塔,测试元件应尽可能选用可同时测量应变与温度的传感器,同时应尽可能考虑后期监控监测或成桥荷载试验的需要,推荐采用埋入式钢筋(或混凝土)应变计,只在不得已情况下才采用表面应变计。对于钢桥塔,推荐采用应变式传感器,温度测试可采用独立的温度传感器。6.1.2布置原则由于索塔应力实测值与理论值的差异不可能达到误差分析或参数识别的要求,测试截面不宜过多,以能反映塔柱控制应力和温度在截面上和高度上的变化为原则。一般情况下可选两侧桥塔各的一个塔柱布设传感器。测试截面位置宜选靠塔底的控制截面、下横梁以上控制截面和靠近桥塔顶的截面。6.1.3测点布置对于钢筋混凝土桥塔,在每个测试截面,宜沿周边布置4~8个传感器。6.2吊索力监测6.2.1设备选型吊索力测试宜采用振弦式索力仪的方法,有条件时可配合采用力传感器。[说明]吊索索力是悬索桥施工过程中的主要监测指标之一。目前平行钢丝吊索索力的测量方法主要有力传感器与利用测振动频率反算索力的振弦式索力仪两种。力传感器具有精度高、测试速度快且受环境干扰小等优点,但价格相对较高,安装及拆卸均较为复杂,且适合悬索桥吊索的力传感器很少。振弦式索力仪测试速度慢、精度较低、受环境干扰大,但其价格低廉且安装及拆除均较为方便,因此在诸多的悬索桥和斜拉桥的施工监测中获得广泛使用。对于地锚式悬索桥的吊索力,施工监控中可采用
振弦式索力仪测试;对于需要张拉才能进行结构安装的吊索,则应在张拉设备上安装21
直接的测力传感器,控制锚固时的张力,并用振动测试法进行检测。6.2.2监控测试目的与测点选择索力监测的主要目的是:1防止因意外情况引起的安装索力过大;2为施工控制的误差分析、参数识别提供实测参数;3用于估算加劲梁和邻近吊索的内力状态。在安装梁段附近测试已安装的五对吊索;远离安装梁段的吊索则进行已安装索数量的40%的抽测。6.3主缆锚跨索股张力监测6.3.1设备选型主缆索股张拉时应采用张拉设备控制张拉力,锚固后的测量宜采用振弦式索力仪与力传感器相结合的方法测试。[说明]主缆锚跨索股张力是悬索桥施工过程中最重要的监测指标之一。主缆锚跨索股力测试分为张拉阶段测试及事后测试。张拉阶段测试指对正在张拉的索股的监测;已经完成锚固的索股会由于温度改变而改变,对其进行的监测成为事后测试。张拉时应在张拉设备下安装测力传感器,直接测量张拉力,同时用振弦式索力仪进行对比测量,确定索的计算参数;有条件时应在索股的锚下安装少量的力传感器,作为长期监测用和校准频率测试法参数的元件。6.3.2测试索股选择和测试频率长期测试宜在每个锚室内选取5%且不少于5根的索股每隔3天进行测试。在重大工况或者特殊工况宜对所有的索股进行通测。用于长期监测的索股,应选择能反映温度变化、散索案(或散索套)位移等影响的代表性强的索股,宜在一个锚室索股中均匀分布。对于采用散索鞍的悬索桥,由于在散索鞍能自由活动之前,张拉的索股少,锚跨索股的张力受温度的影响很大,一般难以准确控制张拉力,在散索鞍能自由活动后,宜根据索鞍位置,计算已张拉索股的理论索力,测试实际索力,计算两者的无应力长度相对差,调整索股长度,使实际索力与理论值尽量一致。对于采用散索套的悬索桥,在散索套安装完成并能自由活动后,应根据理论值与
实际测试值,调整一次锚跨索力。22
[说明]主缆锚跨索股张力监测具有以下几个主要目的:1确保锚固张力的准确;2为施工控制的误差分析、参数识别提供实测参数;3用于计算锚跨索股的架设无应力长度和主缆锚跨张力的合力。基于索力监测的目的及其具体情况,张拉测试可仅对所张拉索股及相邻索股进行测试。6.3.3提高振动法测试索力精度的措施为提高测试精度,应采用带有传感器的张拉设备对吊索和锚跨索股进行张拉,同时采用振动法测试索股在对应张力下的振动频率,建立不同边界条件的有限元模型,通过几组试验结果与计算结果的比较,首先确定合适的边界约束条件;然后调整索截面的抗弯刚度,试算确定索截面的抗弯刚度,通过多组试验数据,确定平均值。在确定了边界条件和截面抗弯刚度后,改变计算模型的索张力,计算出索张力与振动频率的关系曲线,以后的测试中通过测试振动频率,直接查表计算索力,克服采用公式计算时各参数误差太大的缺点。[说明]影响振动法测试吊索和主缆锚跨索股张力精度的因素主要有三个:(1)索股截面抗弯刚度的影响;(2)索股边界条件的影响;(3)计算张力时所用索股长度。采用各种方法,准确识别出以上三项影响,则可提高振动法测试索力的精度。6.4主梁应力的监测对于采用梁段吊装后先铰结、全部吊装完成(或二期恒载等代荷载施加后)再刚结施工法施工的悬索桥,一般不需要对加劲梁的应力进行监控。6.5温度的监测6.5.1设备选型温度测量宜采用电子式温度传感器,其测温精度一般为±0.5℃。若有特别要求,应选择精度更高的测温传感器。6.5.2布置原则对于基准索股,应布置能反映纵向温度变化的温度测点,桥塔两侧应布置测点。
23
对于一般索股,则应在相对基准索股和调整索股的各跨上布置测点;对于横断面,则应按测点均布的方式布置测点。[说明]由于温度对结构变形及内力的影响均较为显著,温度对结构的影响可以分为均匀温度影响与非均匀温度影响,均匀温度影响指整个结构均处于相同的温度场下,非均匀温度指结构各部分由于日照或热传导速度的影响造成各部分温度不一致的情况。均匀温度场的温度改变对结构的影响较小,因此,悬索桥的施工控制总选择在结构各部分温度尽量接近的情况下进行。6.5.3一般的测点布置基准索股纵向温度测点位置纵向布置见示意见图5.1,每个测点布置3个智能型温度传感器、每个塔柱阴阳面各布置1个温度传感器。图6.1主缆纵向温度测点布置和自动采集系统主缆表面内外温度存在着差异,并且主缆越粗,内外温度相差越大。为了准确确定主缆断面的平均温度,就必须知道主缆断面的温度场分布情况。在主缆上选择一个断面布置温度传感器,以确定主缆表面的内外温差及温度场。图5.2为一横断面温度测点布置的示意图。
24
图6.2主缆断面温度场测点布置图6.6监控测量6.6.1监控测量的标准监控测量应满足国家和交通部颁发的相关测量标准。包括:1)中华人民共和国交通部颁:公路桥涵施工技术规范(JTJ041-2004)2)中华人民共和国国家标准:国家一、二等水准测量规范,GB/T12897-2006;3)中华人民共和国行业标准:建筑变形测量规范(JGJ/T8-97)4)中华人民共和国国家标准:工程测量规范(GB50026-93)5)中华人民共和国国家标准:全球定位系统(GPS)测量规范,GB/T18314-20016)中华人民共和国行业标准:公路全球定位系统(GPS)测量规范,JTJ/T066—98,6.6.2监控测量的内容6.6.2.1上部构造施工前监控测量工作的内容1)建立上部构造施工测量和监控测量局部控制网开展上部结构施工前,应建立上部结构施工测量和监控测量局部控制网。[说明]特大型悬索桥上部构造的施工,是悬索桥施工过程中工序最多、施工工艺最为繁杂的关键阶段,需要进行大量的施工测量和监控测量,而这些施工测量和监控测量的基准,应该是布设在地面上的稳定、方便施测和高精度的测量控制网。因此上部构造施工前,应在所建大桥施工测量控制网的基础上,加密上部构造施工局部测量控制网。局部测量控制网应该是一个三维网,以方便上部构造施工测量和监控测量。
所建立的控制网应考虑按工程测量二等平面和高程控制网的精度等级施测,可用GPS25
静态测量的方式建立局部平面控制网,用常规水准测量和跨河水准测量相结合的方式建立局部高程控制网。大桥上部构造施工局部控制网的主要作用有:(1)悬索桥基准索股和主缆绝对垂度测量控制及其线形监测的基准;(2)悬索桥索塔位移和跨径变化监测的基准;(3)悬索桥主梁线形监测的基准;(4)悬索桥索夹位置放样的基准;(5)悬索桥索塔及锚锭基础沉降变形监测的基准;(6)悬索桥锚锭基础水平位移监测的基准。2)索塔顶部标高和平面位置受温度影响的36小时~48小时的静态变形监测宜选择至少一个塔柱,对其顶部标高和平面位置进行不少于36小时的静态变形观测。[说明]大跨度悬索桥的桥塔一般都比较高,其塔顶标高和平面位置受温度影响的静态变形及其变形的规律,对大型悬索桥上部构造施工中的索塔偏位监测、跨径变化监测、主鞍座预偏量的控制、基准索股和主缆的垂度控制以及索夹的放样等,有着至关重要的影响,因此应在上部构造施工前宜进行此项监测。由于各个塔柱的荷载、结构形式、施工方法和力学性质基本相同,因此由一个塔柱观测试验获得的预测模型,对其他塔柱具有较大的参照价值,这样处理,既可满足特大型悬索桥施工监控的需要,又可较大地降低测量监控的外业工作量。(1)索塔顶部标高位置受温度影响的36小时~48小时的静态变形监测标高位置的静态变形监测的基准点,布设在索塔承台基础的顶面,而监测点则布设在索塔顶部表面,在下横梁和中横梁顶面各布设一个转点,采用悬挂钢尺水准测量的方法进行观测。施测时,需准备2把50m、一把100m的钢卷尺和四台水准仪,所有钢卷尺和水准仪,必须经过有关计量部门的检测和较正,在承台和下横梁以及中横梁和上横梁之间,各悬挂一把50m的钢卷尺,在下横梁和中横梁之间,悬挂一把100m的钢卷尺,所悬挂的钢卷尺,必须施加标准的拉力;而四台水准仪则分别布设在承台、下横梁、中横梁和上横梁上,对已悬挂好的钢卷尺同步进行观测,观测的同时测量空气温度、钢卷尺和索塔阴、阳面的表面温度,以便对钢卷尺施加温度改正。此项监测应连续观测36小时~48小时,每一小时观测一次。
(2)索塔顶部平面位置受温度影响的36小时~48小时的静态变形监测26
索塔顶部的静态变形主要是由于日照方向的变化而引起的,如上午,阳光直射索塔的东面,此时东面砼的温度比西面的高,形成温差,由于热胀冷缩的作用,索塔向西扭转变形;到下午,则情况相反。而日照方向的变化和温差的大小,与当地的时间有关系,因此扭转变形观测的内容,包括观测的时间、空气温度、索塔阴阳面砼表面的温度和索塔在顺横桥向方向的位移量,而且必须连续观测36小时~48小时,从而获取索塔在这一高度时,扭转变形量随时间和温度变化的数学模型,最后根据这一数学模型,推求任一时间的扭转变形量,以掌握其变形的规律。3)锚锭和索塔基础在上部构造施工过程中沉降监测上部结构施工过程中应对锚碇和桥塔基础的沉降进行不间断的测量。[说明]在上部构造施工期间,巨大的主缆和主梁的重量将逐步作用在锚锭和索塔的基础上,有可能使锚锭和索塔基础产生均匀沉降和不均匀沉降,而由于锚锭和索塔基础的均匀沉降和不均匀沉降,又都将影响悬索桥上部构造施工的质量和安全,此外为验证锚锭和索塔基础设计合理性和施工的质量,均应对布设在锚锭和索塔基础上的沉降监测点,在上部构造施工期间,进行定期不间断的沉降监测,以了解锚锭和索塔基础的稳定性,从而确保上部构造施工的精度和成桥质量。(1)监测要求根据规范,沉降监测应能监测锚锭和索塔地基基础±2mm以上的均匀沉降量和不均匀沉降量,为达到这样高的监测精度,根据目前的技术和手段,只有采用精密几何水准测量的方法,即用精密水仪(WILDN3或ZAISSNi004)及其配套的精密铟钢水准尺和标准尺垫、扶尺架等,按某一精度等级的水准测量施测要求,以往返符合水准路线或闭合水准路线的形式,定期地从基准点对布设在构筑物基础上的监测点进行观测,则不同周期监测点的高程变化量,就是由于荷载作用在锚锭和索塔地基基础上所引起的监测点的沉降量。(2)基准点和监测点的位置设计与埋设对锚锭和索塔基础沉降监测基准点的位置和数量要求是:①稳定,作为变形监测的基准点,一定要远离建筑物荷载的影响区域,并有一定的埋设深度和不易遭受破坏;②联测方便;③在数量上至少有三个,以便通过基准点的联测,监测和检验基准点的稳定性。对锚锭和索塔基础沉降监测监测点的位置和数量要求是:①监测点布设在被观测
27
建筑物最能反映变形特征的位置上,为此在建筑物基础设计的后浇带或沉降缝两侧应布点,在建筑物不同层高的分界处两侧应布设,在建筑物荷载比较集中的地方应布点,在建筑物的轴线及其四周应布点;②点位应布设在便于观测、点位稳定和施工干扰小的地方;③点的数量应能反映整个建筑物基础的变形情况,并满足变形分析的需要。(3)观测路线设计基准点之间的水准联测,宜采用闭合水准路线的形式;监测点之间的水准观测,也宜采用闭合水准路线的形式,并至少应构成二个以上闭合环;而基准点与监测点之间的水准联测,宜采用往返符合水准路线的形式。[说明]闭合环或附合水准路线,都具有多余观测,有利于检测外业观测中的误差和粗差,提高外业观测数据采集的质量和可靠性,同时还有利于数据的严密平差和提高精度。(4)沉降监测的观测精度设计在沉降观测中应采用国家二等水准测量的精度要求和观测方法进行施测,应能监测锚锭和索塔基础较小(±2mm)的沉降量。(5)沉降监测的观测周期设计应根据荷载(层数)增加的情况、施工的进度和沉降量的大小决定。[说明]按规定,第一次观测应在上部构造施工前进行,第一次观测应连续独立地观测两次,以作为沉降量计算的相对基准;之后应每一个月观测一次或在猫道施工的前后、主缆施工的前后和主梁施工的前后进行观测。基准点也应每四个月复测一次,以监视基准点的稳定性。(6)沉降监测的数据获取与数据处理对外业采集的数据,首先进行数据的预处理,即在观测过程中,实时地计算各测站的各项精度指标,对于超限的测站,应及时地进行重测、补测,当一条路线观测结束,计算路线的往返测较差或闭合差,以评定外业观测的精度;之后进行数据的后处理,首先对已传输到计算机中的合格的外业数据,按最小二乘原则进行严密的平差计算,计算本周期的观测高程和内业精度评定;接着,根据本周期的观测高程和以往各周期的观测高程,计算各监测点的相对沉降量和累计沉降量,并计算沉降速度和绘制时间或荷载沉降曲线图;最后,根据各周期的相对沉降量和累计沉降量,进行变形分析和变形的预测预报工作,变形分析采用方差分析法,分析各监测点的沉降是否为显
28
著性变形,变形的预测预报,采用回归分析法建立变形模型,并根据所建立的变形模型,预测未来将要发生的沉降量。4)主鞍座和散索鞍三维位置以及各主索鞍座、各散索鞍的里程、中线和高差的测量上部结构施工前,应进行塔、锚联测,获得准确的各关键控制点的实际数据。[说明]在上部构造施工前,首先应收集锚锭、索塔和散索鞍、主鞍座控制测量和竣工测量的资料,分析了解这些与悬索桥上部构造施工密切相关的建筑物和机械构件的施工和安装的精度;此外应根据局部测量控制网点,采用测边交会或边角交会或极坐标方法和悬挂钢尺水准测量或直接水准测量的方法,实测主鞍座和散索鞍的三维位置以及各主鞍座、各散索鞍的里程、中线和高差的测量,而南北索塔间跨径和高差的测量以及同一索塔上下游两塔柱间间距和高差的测量,可在塔顶和上横梁,直接采用测距仪或全站仪测量跨径和间距;在塔顶,直接采用精密水准仪以跨河水准测量的方式,测量南北索塔间的高差以及同一索塔上下游两塔柱间的高差。以上数据,是悬索桥上部构造施工监控计算和变形监测的重要依据和原始数据,必须在上部构造施工前准确地采集。6.6.2.2主缆施工阶段施工测量和监控测量工作内容1)猫道施工时桥塔桥轴线方向位移及扭转状态的测量应对猫道施工时桥塔桥轴线方向的位移及扭转情况进行测量,应采取措施控制猫道施工后桥塔顶的桥轴线方向的变形和扭转变形。[说明]为了使猫道施工的线形最大限度地接近设计线形,以方便后面基准索股和主缆的施工,除较好地实测和控制猫道索的垂度外,还应对该工况下的桥塔水平位移及扭转状态进行监测和控制,因为猫道的垂度与南北索塔间的跨径有密切的关系,而南北索塔间的跨径变化,可通过对桥塔水平位移的监测获得;此外同一个索塔两个塔柱间的水平位移若不相同,则会出现桥塔的扭转变形,而桥塔扭转变形的出现,则说明猫道索对同一个索塔两个塔柱的作用力不一样,这将影响猫道索施工的质量,因此应对猫道施工时桥塔水平位移及扭转状态进行监测与控制。猫道施工时桥塔水平位移及扭转状态的监测,可采用“测边交会或边角交会”的方法进行监测,此时监测点布设在四个塔柱的顶面,具体位置为南北索塔的横桥向几何轴线上,可事先采用测量放样的方法放样出监测点的位置,并在该位置上建立强制
对中装置,该项监测的测站点可采用局部平面控制网点。29
此项监测监测点的初始值应在索塔的裸塔状态下进行观测,则猫道施工不同工况下所测的监测点的坐标,与其初始值的差值,即为该工况下索塔的水平位移,而该工况下东西索塔的水平位移的差值,即为猫道施工时桥塔扭转的变形量。2)主索鞍及散索鞍在架设时预偏量的监控应在裸塔的时候,用极坐标法放样出索塔及散索鞍墩的几何轴线;架设主索鞍及散索鞍后,根据索塔及散索鞍墩的几何轴线与主索鞍及散索鞍的几何轴线间的距离,控制主索鞍及散索鞍在架设时的预偏量。3)基准索股绝对垂度的监控对于基准索股的架设,应采用几何测量的方式进行高程与水准测量,应对桥位现场影响测量精度的参数进行试验确定。[说明]基准索股的架设及监控测量是保证悬索桥主缆线形的重要施工步骤,应采用合理可靠的测量方法。(1)基准索股绝对垂度监控的重要性基准索股绝对垂度的监控,实质上是基准索股线形的监控,也就是基准索股重要部位(中、边跨跨中)绝对垂度即标高的测量,并与相应工况下监控计算的垂度值相比较,以控制和调整基准索股线形。垂度测量应采用二种不同的测量方法进行测量,以便相互验证、相互校核,从而确保基准索股的线型。基准索股标高的测量与调整,在悬索桥上部构造施工过程中占有十分重要的地位。基准索股的线型,实质上就是以后主缆的线型,因为主缆中其他索股的线型,是根据基准索股的线型而进行相对控制的,因而基准索股的测量,应绝对可靠和满足设计精度的要求,同时应顾及温度变化的影响。由于西堠门大桥索股较长,因而温度的细小变化,将较大地影响索股的长短,继而影响中跨跨中和边跨跨中基准索股的绝对垂度,因此绝对垂度的测量,应在夜间温度变化较小的时间段内观测。(1)基准索股绝对垂度监控测量的方法基准索股垂度测量的第一种方法是:单向三角高程中间法。众所周知,宽阔水面上空进行三角高程测量,由于水网地区大气折光的影响复杂性和竖直角对高差的影响随距离的增大而增大,所以长距离三角高程测量的精度较低,一般1000~1500m距离三角高程的精度在5~10cm左右,甚至更大;而对向三角高程可大部分地减少大气折光的影响,但由于基准索股的垂度测量,根本无法进行对向观测,因此为了达到基准
30
索股垂度测量的精度要求,在单向的情况下,只能采用三角高程中间法,即在待测点附近,选择外界条件与待测点相似的水准点(与待测点同高)。垂度测量时,在测站上分别观测待测点和水准点的竖直角,继而求出水准点和待测点间的高差,最后根据水准点的高程和观测高差计算待测点高程,此法由于观测得到的是高差值,可认为大气折光的影响在高差的计算中得到大部分的消除,因而待测点的高程可达到一定的精度,如果此法运用得当,在1000m~1500m的范围内,绝对垂度的测量可达到±2.0~2.5cm的精度,基本上可满足大型悬索桥基准索股垂度测量的精度要求。基准索股测量的第二种方法是:单向三角高程测量,在数据处理时考虑当地大气折光系数的改正和地球曲率的改正,而当地水面大气折光系数的获取,可根据跨河水准测量和同时对向三角高程对比实验的方法,在当地不同气象条件下经过实验获取,若实验的方法得当,实验的次数足够多的情况下,所获得的大气折光系数具有一定的代表性,可对观测的垂直角进行改正,最后采用改正后的垂直角计算待测点的高程,此法运用得好的话,亦可达到第一种方法的精度,因而两种方法可交替或同时使用,相互校核,以达到测量值绝对可靠和高精度的目的。4)一般索股相对垂度的监测宜采用精度不低于±2~±3mm的大型游标卡尺进行测量。[说明]一般索股相对垂度的监控,实质上是一般索股线形的监控,也就是一般索股与基准索股重要部位(跨中)相对垂度即高差的测量,通过一般索股与基准索股的实测高差和监控计算高差的比较,以控制和调整一般索股的线形。一般索股相对垂度的测量,采用相对垂度法,即使用大型卡尺测定基准索股与待调一般索股的高差,并以基准索股为基准来调整一般索股,大型卡尺是专门设计并订做的,读数和高差测量的精度不低于±2~±3mm。由于待调丝位于群体索股之下,因此待调索股的温度一般低于群体索股的温度,调整时必须考虑两者间温差的影响,在一般索股架设期间,应根据监控的要求,定期复测基准索股的绝对垂度,以检查基准索股的垂度是否在后续索股的架设中发生了变化。5)两根基准索股间和主缆间相对垂度的监测宜采用液体静力水准测量和高程测量的方法相互校核比较。[说明]上下游两根基准索股间相对高差的测量,一般首先采用液体静力水准测量即连通管水准测量的方法,在风小、夜间温度变化较小和索股稳定的时候,直接测量
31
两根基准索股间的相对垂度,再用三角高程中间法复核两根基准索股的相对垂度;上下游主缆间的相对高差,也采用这种方法实施监控。6)主缆架设阶段索塔的变位监测主缆架设期间桥塔的变形情况可采用“距离差监测法”和平面GPS法进行监测。[说明]索股的牵引,将使作用在索塔上的水平力发生变化,从而导致索塔的变形和跨径的变化,而为控制索股和主缆的线形,又必须监测索塔的变形和跨径的变化,因此在主缆架设阶段,必须进行索塔的变位监测。(1)通视条件良好时的“距离差监测法”由于索股牵引所引起的索塔变形和跨径变化,其变形量为一维,主要的变形方向为顺桥向,即不是中跨方向就是边跨方向;此外在上部构造施工中的索塔变形监测,既需常规的静态变形监测,又需进行索股垂度调整过程中的实时准动态变形监测,因此在设计索塔变形和跨径变化监测方案时,应结合上述特点,同时要求所选择的变形监测方法,应简洁、快速、可靠、高效并易于实现,才能有效地配合施工。(2)通视条件不好时的GPS监测法海面气象变化容易造成南北两索塔间通视困难,上述的“距离差监测法”在索塔的变位监测中难以实现,为不影响索股的架设和保证工期,可在通视条件不好时,采用GPS静态测量的方法,监测索塔的变位和跨径的变化。具体实施时,宜采用6台测量型GPS接收机,把其中两台分别架设在两岛岸的两个控制网点上(基准点),其余的4台分别架设在两侧索塔的四个塔柱的顶面,同时段观测40~45分钟,然后解算四个索塔监测点在当前工况下的实测坐标,并与其在工况改变前的坐标进行比较,从而求出该工况改变所引起的索塔变位量,同理通过坐标的反算,可求出当前工况下索塔间的跨径以及跨径的变化量。7)索夹位置的测量放样宜采用两台全站仪,根据极坐标方法进行索夹位置的测量放样,测站点和后视点均设置在索塔的塔顶[说明]主缆施工完成后,应先实测出主缆的线形、两侧索塔塔顶的里程、以及索塔间的间距(即跨径),为索夹位置的监控计算和测量放样提供一组初始数据。索夹测量放样的时间应选择在风小和夜间温度稳定的时候进行,因为在夜间,主缆的顺桥向和横桥向温度、主缆的内外温度以及上下游主缆间的温度较差较小,主缆
32
不发生扭转;索夹位置测量放样的数据计算包括两方面的内容:首先是计算吊索中心线和主缆中心线在空缆线形下的坐标,其次是计算各个索夹的中心线到其两端的距离,对于前者,计算的依据是任意两吊索中心线与主缆中心线交点之间主缆的无应力长度在任何线形状态下均相等,这方面的计算内容较为复杂,须由监控部门计算提供,而后者,不同位置的索夹,计算出的放样数据也不同;由于索夹的数量较多,需要多次(天)完成,因而放样时应量测空气温度和主缆表面温度,并尽量在温度基本相同的条件下进行索夹放样。6.6.2.3主梁施工阶段施工测量和监控测量的工作内容1)加劲梁吊装过程中应对主鞍座的顶推量进行监测[说明]由于主梁中每一块钢箱梁的重量都较大,因而主梁的吊装,将引起索塔较大的位移和跨径较大的变化,而过大的索塔变形和跨径变化,是悬索桥上部构造施工中所不能允许的,因而只有通过对主鞍座的顶推,来恢复索塔的位置和设计的跨径。主鞍座的顶推是随着钢箱梁吊装的进程而逐渐进行的,其每一次的顶推量都是由监控计算给出的,因而每一次的顶推,都必须对该次顶推的量进行监控。监控的方法可以设置在索塔顶面横桥向方向上的监测点为依据,通过量取索塔横桥向轴线(监测点)到主鞍座几何中心(主鞍座的接缝中心)的距离,确定主鞍座的偏移量,从而实现对顶推量的监控。2)加劲梁架设过程中宜对梁段的线形进行监测[说明]众所周知,悬索桥主梁的线形,主要地由主缆的线形和吊索的长度确定,在主梁吊装过程中其标高是无法调整的,而主梁线形监测的目的,是观察吊装后钢箱梁的线形是否与当前工况下的监控计算标高相吻合,以预测和调整主梁成桥后的线形。拟采用直接水准测量的方法,测量已吊装梁段主梁的线型,直接水准测量的水准点,设置在南北塔柱与钢箱梁顶面基本等高的塔柱外侧面上,每个塔柱可设置一个水准点。由于特大跨径悬索桥的主梁长,当已吊装的梁段长度较短时,可采用一至二台水准仪同时观测;当已吊装的梁段长度较长时,在温差的作用下,梁段标高的变化是相当显著,此时主梁线型的测量,必须在尽可能短的时间内完成,以避免由于温度变化所引起的主梁线型测量的误差,为此在梁段较长时,应采用多台水准仪同时测量,以缩短主梁线形测量的时间,除此之外还应采取以下措施:
(1)在风力较小和夜间温度变化小的时间段内完成观测,一般在凌晨1点~6点。33
(2)在水准测量的同时,应每隔15分钟测量并记录空气和主缆、吊索、钢箱梁表面的温度。3)加劲梁架设过程中宜对梁段中线进行监测[说明]主梁架设阶段,虽然吊装后每一块箱梁的中线位置主要地由主缆的线形、索夹的位置和箱梁上吊点的位置确定,但也应监测已吊装梁段的中线,观察钢箱梁的焊接是否引起箱梁中线的变化和钢箱梁焊接后的梁段中心线是否与设计桥轴线方向相吻合。此项监测,可通过在索塔的系梁上所设置的桥轴线方向点,采用经纬仪或全站仪视准线法,监测梁段中线的偏位情况。4)加劲梁架设过程中应索塔及散索鞍位移的监测[说明]架梁过程中索塔位移监测的方法与原理,同上5.6.2.2;而架梁过程中散索鞍位移的监测,可在散索鞍的顶面横桥向方向轴线上设置监测点,每个散索鞍设置一个监测点,最好也安装强制对中装置,之后根据局部控制网点(基准点),采用测边交会或边角交会的方法测量散索鞍的位移,此项变形监测的初始值,应在上部构造施工前测定,此后根据施工的进展,定期地对散索鞍的位移进行监测。6.6.2.4成桥时主缆及桥面线形、桥塔位置、散索鞍与主索鞍位置的测量1)主缆线型测量(1)测点布置:①上下游主缆各观测13个点的缆顶标高,这13个点分别为两边跨的四分点、中跨的八分点。要求在观测缆顶标高前,在主缆上放样出这些测点的平面位置。②加测上下游主缆在塔顶和锚碇出口处的标高。(2)观测要求:①采用两台全站仪,同时用中间法三角高程同时对同名点进行观测,并对测量成果施加地球曲率和大气折光改正。②东西线主缆在塔顶和锚碇出口处的标高,根据塔顶和锚顶水准点采用直接水准测量的方法测量。2)加劲梁线型测量(1)测点布设:有索区,每对索观测一个断面,每个断面观测4个点,左右半幅桥各布设2个点,以便横坡和纵坡的计算,每个测点距路沿石内侧边缘15cm;无索区,每个断面布设4个点,位置同上。(2)观测要求:从控制网联测高程,在东西锚上设立临时水准点,4台自动安平水准仪同时从东西塔塔中,同时向中跨观测各测点高程,按四等水准测量的精度等级
观测,观测时每半小时记录空气温度和钢箱梁表面温度,并尽可能在夜间1点至凌晨34
6点之间观测。3)加劲梁长度和方位的测量加劲梁长度和轴线方位测量:采用全站仪极坐标法,实测主梁两端伸缩缝桥轴线和两边线对称位置处的坐标,根据实测坐标反算主梁桥轴线和两边线的长度及轴线的方位,两边线位置为东西线路沿石内侧15cm处,观测时记录空气温度和主梁表面温度。4)主塔和主索鞍位置测量及跨径测量根据局部测量控制网,采用测边交会或边角交会或极坐标方法,测量南北塔各塔顶上主鞍座横桥向轴线的里程,并与设计里程比较,以反映主鞍座在成桥时顺桥向方向的偏位情况;根据局部测量控制网,采用测边交会或边角交会或极坐标方法,测量各索塔顶几何中心的坐标,并与设计坐标比较,以反映成桥时索塔顶的偏位情况;在塔顶用测距仪或全站仪,直接测量南北索塔东西线和桥轴线的实际跨径,并与设计跨径比较,以反映成桥时跨径的偏差情况;采用悬挂钢尺水准测量的方法,测量索塔的高度并与设计高度比较,应反映成桥时索塔高度的偏差。5)散索鞍位置测量根据局部测量控制网,采用测边交会或边角交会或极坐标方法,测量南北锚锭上散索鞍座横桥向轴线的里程,并与设计里程比较,以反映散索鞍座在成桥时顺桥向方向的偏位情况。
35
177施工异常情况的对策及质保体系187.1施工异常情况对策根据上部结构单元施工和恒载加载顺序并考虑施工控制的特点,可将上部结构施工划分为如下9个大阶段,各阶段内容和可能的异常情况的对策如下:7.1.1桥塔立柱施工阶段桥塔立柱的施工要预留恒载弹性压缩量,应注意修正温度对立模位置的影响。对于在允许范围内的误差可在主缆架设时通过考虑误差影响调整主缆的成桥理论线形来达到设计要求。[说明]索塔施工立模位置受温度影响大,如果不加以修正将直接导致索塔线形的误差,监控单位应通过对索塔温度场及索塔偏位的连续观测向施工单位提供索塔立模的温度修正量。7.1.2安装施工猫道猫道架设时要注意监测桥塔的偏位,如果发生超限,应调整相邻两跨的猫道的施工进度,减少塔处两跨承重索的索力差。7.1.3主缆索股架设主缆的架设误差调整可通过实测主缆线形、温度,以成桥设计线形为目标,反算出各跨主缆的无应力长度,重新计算出索夹位置和吊索长度,通过控制索夹安装位置和调整吊索长度消除主缆架设误差的影响。7.1.4紧缆、索夹安装索夹放样时应采用绝对距离测量法,以避免相对距离测量的误差累积。如果某索夹放样误差超限,应重新放样。[说明]索夹安装时需要控制的目标是保证吊索的中心在成桥后位于设计要求的位置,因此需要准确计算出索夹的安装位置和主缆的倾角,准确计算出各点的放样位置;7.1.5
梁段安装、顶推鞍座36
梁段安装过程中如果桥塔偏位超限或实测偏位与计算偏位相差过大,要检查计算参数取用的合理性;如果修正了计算参数,则要检查原梁段吊装方案和鞍座顶推方案是否合理。鞍座的顶推与梁段安装过程要配合进行,梁段安装的方案需要通过反复的计算比较并结合现场的实际情况确定。对于每一安装梁段,应计算其安装线形、吊索拉力、已安装吊索张力的变化;安装完成后要通过测量加劲梁的实际线形,进行参数识别和修正,检验和测量结构杆件的内力,如果测试、测量结果与计算差异过大,应检查原因,找出问题并修正一致后再继续施工。对于合龙段要制定良好的吊装和刚接方案,注意监测临时连接的平顺性。7.27.2.1监控实施组织监控机构组织体系为保障施工控制工作的高效运作,必须明确施工控制实施过程中的各项工作制度和组织制度。在施工控制阶段,宜成立由大桥的建设单位、设计单位、施工单位、监理单位和监控单位有关人员组成的“施工控制领导小组”,负责施工控制工作过程中的总体协调工作。施工控制组织体系见图6.1所示。施工监控领导小组监控项目负责人监控技术负责人远程咨询专家测量、测试负责人测量、测试组技术人员计算分析、数据处理组负责人计算分析、数据处理组辅助技术人员图7.1监控机构组织体系[说明]从信息论的观点看,桥梁的施工控制过程是一个信息跟踪采集、信息分析处理、实时控制和信息反馈的过程。一座大桥的建设将涉及到建设、设计、施工、监理和监控等多个单位,各个单位在施工控制过程中发挥着不同的作用。施工控制工作
37
必须依靠建桥各方的密切合作、团结协调和共同努力才能实现。7.2.2施工控制技术体系桥梁的施工控制与桥梁设计、施工及监理是密切联系的。通过实时测量体系和现场测量体系,可以采集到桥梁施工过程中的各类控制所关心的数据信息。借助桥梁施工控制的计算体系,对采集的数据信息进行分析,尤其是对施工中各类结构响应数据(如变形、内力、应力、温度场等)的分析,可以对施工误差作出评价,并根据需要研究制订出精度控制和误差调整的具体措施,最后以施工控制指令的形式为桥梁的施工提供指导信息。施工体系控制指令反馈信息监理办公室控制指令反馈信息设计体系现场测试体系混凝土容重混凝土弹模结构尺寸施工荷载施工反馈数据现场测试参数实际目标真值理论目标真值比较应力预警参数修正比较理论施工误差修正量计算下阶段的指令控制数据误差状态分析容许误差指标体系实际施工误差立模标高轴线偏位索力施工控制体系图7.2施工控制技术体系7.3监控质量及安全保证措施为了确保监控技术方案的切实执行、监控数据的准确可靠,同时达到监控能协助施工单位进行安全、优质、高效地施工的目的,应采取以下措施来保证监控质量:
1)应有由经验、业务素质高的人员组成现场监控组,并使成员各具所长,配合密切,38实时测量体系线形测量物理测量力学测量箱梁标高施工时间主梁应力主梁轴线环境温度墩身应力塔顶位移结构温度索力施工控制计算体系施工体系施工体系反馈信息计算核对实际参数控制指令设计参数
以利于各项工作的开展;成立大桥监控工作专家组,对监控方案充分论证,对现场监控组给予技术指导;2)制订的实施监控大纲获得建设单位、监理单位的批准,并与设计、施工单位保持良好的沟通;建立有效的监控工作管理、实施体制;按工作大纲进行工作,加强质量管理,并及时反馈必要的意见和建议;3)随时接受建设单位技术部门和监理单位的技术监督。4)对监控计算结果,应加强校核(包括设计单位复核),消除计算中可能的偏差和失误;5)选择性能可靠的测试元件,严把元件质量关。埋设于结构中的元件,埋设前均应进行检测,在埋设时要求技术人员细致耐心,认真负责,并取得施工单位的大力配合,确保元件的成活率在90%以上;对埋设和布置的测试元件采取有效的保护措施;6)对应用于大桥的施工监控的仪器设备均应标定,确保仪器设备准确可靠。并在使用过程中经常进行检查和保养,一旦仪器设备精度有疑问时,即应进行检定,以保证测试数据的有效性。7)施工监控指令设立3个预警级别。如果属于第3级,如桥塔水平位移、桥塔应力异常,则需停工,通过提议由监理组织召开专家会议,查找原因,采取应对措施。8)在监控数据采集和测试过程中,严格执行复核、校核程序,确保数据的真实、可靠;加强自检、互检,严格复核签字制度。在复核中一旦发现不正常的数据,立即进行必要的复测,以避免错过测量时机,造成漏测或无效测量。9)加强各项记录及电子文档的管理,及时对数据进行可靠的备份;
39
您可能关注的文档
- 北澧河大桥施工组织设计 (2)
- 1#永久过河大桥施工方
- 框架桥施工设计方案
- 锡宜高速公路京杭运河大桥施工组织设计方案 (2)
- 北澧河大桥施工组织设计
- 右hldk95+143.46框构桥施工方案设计
- 王庄大桥施工方案
- 某河大桥施工方案
- 试论路桥施工企业管理激励机制的建立
- 新城核心区纬二路一标献礼水库桥施工技术方案
- 特大桥施工测量方案(修该)
- dk0+340.5__d匝道大桥施工设计方案
- 高速k6+452.5 x098跨线大桥施工组织设计
- 高速公路陡梯1#大桥施工组织设计
- 高速公路第八合同段高速主线桥施工安全方案
- 基于淀西河桥桥梁拆桥施工方案的设计毕业设计论文.doc
- 浅析论路桥施工工程安全生产管理.doc
- (修改) 中云站旅客天桥施工组织设计